
© 2019, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Threat Hunting In Cloudtrail &
Guardduty
Chris Farris
Cloud Security Lead

D E V 0 8

What do we say to the God
of account compromise?

Not Today

Goals

● Getting data into Splunk
● Splunk Queries

○ CloudTrail
○ GuardDuty
○ Resource Inventory

● What to do about with what you discover

https://www.chrisfarris.com/post/reinforce-threat-hunting/

Who Am I?
Cloud Security Architect for Turner (now WarnerMedia)

My job is to keep the Russians off cnn.com and my friends
from downloading Rick & Morty

Tools

● Centralized CloudTrail
● Centralized GuardDuty
● Antiope
● Splunk

Scale

● 275 AWS Accounts
● 5m CT Events per hour
● 13% are Management Events
● 7% AssumeRole
● 2% Decrypt

Centralized Cloudtrail

● CloudTrail deployed via CFT in all accounts
● Events written to one bucket per payer
● Dedicated Logging account
● Splunk Ingests the CT Events

CloudTrail Primer
{
"awsRegion": "us-east-1",
"eventName": "CreateBucket",
"eventSource": "s3.amazonaws.com",
"eventTime": "2019-06-09T15:37:18Z",
"eventType": "AwsApiCall",
"recipientAccountId": "123456789012",
"requestParameters": {},
"responseElements": null,
"sourceIPAddress": "192.168.357.420",
"userAgent": "[S3Console/0.4, aws-internal/3 aws-sdk-java/1.11.56 blah]",
"userIdentity": {
"accessKeyId": "ASIATFNORDFNORDAZQ",
"accountId": "123456789012",
"arn": "arn:aws:sts::123456789012:assumed-role/rolename/email@company.com",
"type": "AssumedRole"

}
}

Root Login Detection
index=cloudtrail "userIdentity.type"=Root AND eventName=ConsoleLogin
{

"additionalEventData": {
"LoginTo": "https://console.aws.amazon.com/console/home?blah",
"MFAUsed": "No",
"MobileVersion": "No"

},
"eventName": "ConsoleLogin",
"eventSource": "signin.amazonaws.com",
"eventType": "AwsConsoleSignIn",
"responseElements": {"ConsoleLogin": "Success"},
"sourceIPAddress": "192.168.357.420",
"userAgent": "Mozilla/5.0 (Macintosh; Intel Mac) AppleWebKit/537.36 blah",
"userIdentity": {

"accessKeyId": "",
"accountId": "123456789012",
"arn": "arn:aws:iam::123456789012:root",
"principalId": "123456789012",
"type": "Root"

}
}

IAM Login with no MFA
index=cloudtrail ConsoleLogin
"additionalEventData.MFAUsed"!=Yes
"userIdentity.type"=IAMUser
| dedup userIdentity.arn
sourceIPAddress

| table "userIdentity.accountId"
"userIdentity.arn"
sourceIPAddress
"responseElements.ConsoleLogin"

IAM Login Locations!
| iplocation sourceIPAddress
| search Country!="United States"
| table "userIdentity.accountId"
"userIdentity.arn"
sourceIPAddress, City, Country
"responseElements.ConsoleLogin"

Expensive Ec2 Detection
index=cloudtrail eventName=RunInstances
| regex "requestParameters.instanceType"
=\d{2}xlarge
| dedup userIdentity.arn
| table "userIdentity.accountId"
"userIdentity.arn"
sourceIPAddress
"requestParameters.instanceType"

Wall Of Shame

index=cloudtrail

eventName = AuthorizeSecurityGroupIngress
"requestParameters.ipPermissions.items{}.ipRanges.items{
}.cidrIp"="0.0.0.0/0"

"requestParameters.ipPermissions.items{}.fromPort"=22

OR
"requestParameters.ipPermissions.items{}.fromPort"=3389

| stats count by userIdentity.arn

User Creation Detection
index=cloudtrail
eventName="CreateUser"
sourceIPAddress!="357.420.*"
sourceIPAddress!="*.amazonaws.com"
| iplocation sourceIPAddress
| stats count by Country

User Creation - Deeper

index=cloudtrail eventName="CreateUser"
sourceIPAddress!="*.amazonaws.com"
| iplocation sourceIPAddress
| search Country="Hong Kong"

Event Names to Care about
● CreateClientVpnEndpoint
● DeleteDetector
● DeleteMembers
● DisassociateFromMasterAccount
● DisassociateMembers
● StopMonitoringMembers
● DeleteTrail
● StopLogging
● UpdateTrail
● AuthorizeSecurityGroupEgress
● AttachInternetGateway

GUARDDUTY

Night’s Watch - Game of Thrones (HBO)

Centralized Guardduty

● All GuardDuty fed to centralized account
● CloudWatch Events triggers a push to

Splunk to Splunk HTTP Event Collector
(HEC)

● Must be done in all regions

https://github.com/turnerlabs/aws-guardduty-enterprise

How does it work?

● Baselines accounts
● 30 day learning period
● Leverages AWS Internal "threat lists"
● You can add your own set of trusted and bad

actor IPs.

GuardDuty Findings
"id": "d5b0fccf-THIS-IS-UNIQUE-PER-FINDING",
"account": "987654321098", <-- SECURITY ACCOUNT
"time": "2019-06-14T14:07:29Z",
"region": "us-east-1",
"detail": {
"schemaVersion": "2.0",
"accountId": "123456789012", <-- MONITORED ACCOUNT
"region": "us-east-1",
"partition": "aws",
"type": "Recon:EC2/PortProbeUnprotectedPort", <-- AWS CLASSIFICATION
"severity": 2,
"resource": {}, <-- either AccessKey or Instance
"service": {},
"createdAt": "2019-02-27T23:41:19.160Z",
"updatedAt": "2019-06-14T13:59:41.042Z",
"title": "Unprotected port on EC2 instance i-fnord is being probed.",
"description": "EC2 instance has an unprotected port which is being probed

by a known malicious host."

GuardDuty Findings - Service
"service": {
"action": {
"actionType": "PORT_PROBE",
"portProbeAction": {
"portProbeDetails": [
{
"localPortDetails": {"port": 22, "portName": "SSH"},
"remoteIpDetails": {
"ipAddressV4": "116.112.202.89",
"organization": {"org": "China Unicom Neimeng"},
"country": {"countryName": "China"},
"city": {"cityName": "Ordos"},
"geoLocation": {"lat": 39.6, "lon": 109.7833 }

"blocked": false
"resourceRole": "TARGET",
"additionalInfo": {"threatName": "Scanner", "threatListName": "ProofPoint"},

},

What events are you seeing?

index=guardduty
| dedup id
| stats count by detail.type

• 66% are PortProbeUnprotectedPort
• 3% are Unusual IAM Recon Activity
• 2.5% are Logins from unusual IP addresses

Logins From New IP Addresses
index=guardduty
"detail.type"="UnauthorizedAccess:IAMUser/ConsoleLogin"
"detail.service....remoteIpDetails.organization.org"!="MYORG"
| dedup "detail....awsApiCallAction.remoteIpDetails.ipAddressV4"
| rename "detail.service....remoteIpDetails.country.countryName" as
Country
| rename "detail.service....remoteIpDetails.city.cityName" as City
| rename "detail.service....remoteIpDetails.organization.org" as Org
| rename "detail.resource.accessKeyDetails.userName" as UserName
| rename "detail.resource.accessKeyDetails.userType" as LoginType
| rename "detail.service....remoteIpDetails.ipAddressV4" as IPAddr
| table UserName City Country IPAddr Org LoginType

Logins From New IP Addrs

RDP Brute Force Report
index=guardduty
"detail.type"="UnauthorizedAccess:EC2/RDPBruteForce"
| dedup id
| rename "detail.service.....remoteIpDetails.country.countryName" as
Country
| rename "detail.service.....remoteIpDetails.city.cityName" as City
| rename "detail.service.....remoteIpDetails.organization.org" as Org
| rename "detail.service.....localPortDetails.port" as Port
| rename "detail.service.....remoteIpDetails.ipAddressV4" as IPAddr
| rename "detail.resource.instanceDetails.instanceId" as Target
| dedup Target
| table City Country Org IPAddr Port Target

RDP Brute Force Report

This is the difference between
"you have a vulnerability"

and
"you are under attack"

Antiope
● Lots of accounts and lots of regions makes for a big haystack
● Enterprise tools are ridiculously expensive
● AWS Config service doesn’t support all AWS services at Turner
● Requirement to track (and identify) foreign AWS accounts
● Search engine to help find BGSHs
● Opensource
● Azure & GCP are in progress
● An-Tie-Oh-Pee

https://github.com/turnerlabs/antiope

Robin Wright as Antiope
Wonder Woman 1984 (Warner Bros. Pictures)

Support Cases
index=antiope resourceType="AWS::Support::Case"
| dedup resourceId
| table awsAccountName configuration.serviceCode
configuration.categoryCode
configuration.status configuration.subject

index=antiope resourceType="AWS::Support::Case"
"configuration.serviceCode"="customer-account"
| dedup resourceId

Public ElasticSearch
index=antiope resourceType="AWS::ElasticSearch::Domain"
NOT configuration.VPCOptions.VPCId=*
NOT ".AccessPolicies.Statement{}.Condition.IpAddress.aws:SourceIp{}"=*
NOT ".AccessPolicies.Statement{}.Condition.IpAddress.aws:SourceIp"=*
NOT ".AccessPolicies.Statement{}.Condition.StringEquals.aws:SourceVpc"=*
| regex ".AccessPolicies.Statement{}.Principal.AWS"="*"
| dedup resourceId
| table configuration.Endpoint resourceName awsAccountName

Taking Action

● This isn't a vendor plug, but….
● Splunk queries -> Demisto
● Demisto playbooks take automated actions
● What isn't resolved is queued for Analysts

PSA: Set Your Security Contact!

● My new goal is to find account compromise
before AWS does

● But if I don't - AWS Abuse will be reaching
out

● Make sure to set the account security
contact if your IR team isn't on the root email
list for every account

https://github.com/turnerlabs/antiope

● @jcfarris
● https://github.com/jchrisfarris
● https://www.linkedin.com/in/jcfarris
● http://www.chrisfarris.com

QUESTIONS?

https://www.chrisfarris.com/post/reinforce-threat-hunting/

